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It was shown by Ciment, Leventhal, and Weinberg (J. Comput. Phys. 28 (1978) 135) that 
the standard compact finite difference scheme may break down in convection dominated 
problems. An upwinding of the method, which maintains the fourth order accuracy, is 
suggested and favorable numerical results are found for a number of test problems. 0 1985 

Academic Press, Inc. 

1. INTRODUCTION 

Compact finite differencing is a means of achieving high order discretisations of 
differential equations without an enlargement of the bandwidth of the resulting set 
of discrete equations. For example, for second-order problems in one space dimen- 
sion, tridiagonal systems having fourth-order accuracy are produced. High accuracy 
coupled with easily solved systems are clearly most desirable properties of a 
numerical method. 

In convection dominated problems, such as in fluid flow at moderate to large 
Reynolds numbers, standard numerical solutions often contain nonphysical 
oscillations. The removal of these oscillations involves either the use of an 
unrealistically small grid or a modification (upwinding) of the method. 

One form of upwinding of compact methods was suggested by Berger, Solomon, 
Ciment, Leventhal, and Weinberg [2]. Their method which is of polynomial type 
ensures that a discrete maximum principle is satisfied. A method of exponential type 
developed by Leventhal [lo] also ensures satisfaction of a discrete maximum prin- 
ciple. In both of these papers the methods were derived from a treatment of the 
whole differential equation as distinct from a second class of compact differencing 
methods which have been used by Hirsh [9] and more recently by Aubert and 
Deville [ 11, where derivatives are approximated individually to high order. In the 
Aubert and Deville paper, compact- differencing is coupled with a transformation of 
coordinates in order to achieve better resolution of the boundary layer without an 
excessive number of mesh points. The latter methods do not require the 
linearisation of nonlinear problems necessary in the approaches of [2, lo]. 
However, no attempt has been made to upwind the method used by Hirsh and the 
purpose of this paper is to show the need for an upwinding and to present a way of 
achieving it. 
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354 I. CHRISTIE 

In Section 2 an analysis of the Hirsh scheme is given for a simple model problem 
and it shows that nonphysical oscillations may occur in the solution. Section 3 con- 
siders an upwinding of the compact method and a free parameter is introduced for 
which an optimal choice exists. Numerical results are presented which show the 
damping of the oscillations and also the important fact that the fourth-order 
accuracy is maintained at realistic mesh sizes. Finally, in Section 4, the upwind 
compact method is extended successfully to cover the cases of.time dependent and 
nonlinear problems. 

2. COMPACT FINITE DIFFERENCES 

Consider the l-dimensional model problem 

u”(X) - Ku’(x) = 0, XE co, 11 
u(0) = 1, u(l)=O, 

where K is a positive constant. The theoretical solution is found easily to be 

KX K 

u(x) = f+ 

(la) 
(lb) 

(2) 

and, as K increases, a sharp boundary layer develops near x = 1. The same test 
problem has been used a number of times to construct upwind methods by 
Spalding [12] for finite differences and Christie, Grifliths, Mitchell, and 
Zienkiewicz [4] for finite elements. It was also used by Ciment, Leventhal and 
Weinberg [3] to investigate the spatial stability of compact methods. 

Divide the unit interval into N equal subintervals [(i- l)h, i/z], i = 1,2,..., N, 
where the grid spacing is h = l/N. Nonuniform grids may be used but they will not 
be considered here. Define the central, forward, and backward difference operators 

D,Ui= ui+l-“i-* ui+l- ui 

2h > D+Ui= h 
Ui- Ui-1 

3 D-Ui= h 3 

respectively. Then, first and second derivatives are approximated by Fi and Si, 
respectively, where 

Fi= Doui 

I+;D+D- 
(4) 

(5) si= D+D-Ui 

l+;D+D- 
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Multiplying across by the denominators in (4) and (5) and using the differential 
equation (la) gives 

~(F.,,+4Fi+F,,)=~(Ui+,-Ui-,) (64 

~(Si+,+lOSj+Si-l)=~(LIi+,--ZU,+Lii-,) (6b) 

Si- KFi=O. (6~) 

These equations hold for i = 1,2,..., N - 1 and (6~) also holds at i = 0, N. Therefore, 
additional boundary conditions are required. The system is tridiagonal and, if the 
Ui are given, it is very easily solved for the Fi and Si. If the Ui are unknowns then 
ordering the unknowns as Ui, Fi, and Si for each i gives a block tridiagonal system 
with 3 x 3 blocks. Taylor series expansions show that 

Fi=Uf-180 4uw+ . ..) 

si= u;-240 ” ~‘6’+ . . . . 

(7) 

(8) 

and so (6) is a fourth-order tridiagonal system for the solution of (1). 
To investigate further the nature of the solution (6), we can eliminate the Fi and 

Si. This can only be done in the linear constant coefficient problem. Using (6~) to 
eliminate Si from (6b) and then using (6a) gives 

Fi=& [(2-L) Ui+lv4Ui+(2+L) Ui&l]y (9) 

where L = hK/2. Substitution of (9) into (6a) leads to the five point formula in Ui, 

(2-L) Ui+,+2(2-5L) Ui+,-12Ui+2(2+5L) U,-, 

+(2+L) ui-*=o, i = 2, 3 ,..., N - 2. (10) 

It is interesting to note that formulas closely related to (10) are obtained from 
various high order Galerkin finite element methods discussed by de Boor [6], 
Douglas, DuPont, and Wheeler [ 73 and Rachford and Wheeler [ 111. 

Although (10) leads to a five diagonal system, we stress that the implementation 
of the compact method involves tridiagonal or block tridiagonal matrices. It is con- 
venient here to consider an analysis of the live point formulation. 

The quartic characteristic polynomial of (10) gives the four roots J, = 1, II,, A2 
and A3. The latter three roots solve the cubic equation 

(2-L)~3+(6-11L)12-(6+11L)&(2+L)=0 (11) 
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which was found by Ciment, Leventhal, and Weinberg [3]. The theoretical solution 
of (10) therefore is 

Ui = A + B1; + CT,; + Di;, (12) 

where A, B, C, and D are constants. The presence of a negative root of (11) in 
Eq. (12) will result in an oscillatory solution. 

To see which values of L produce a negative root of (11) notice first that all three 
roots A,, I,, and 1, are real. In fact, on introducing 

A= & p-2+YL 
( ) 

CL f 2), (13) 

(11) reduces to the form 

/i3+3Hp+G=0, (14) 

where 

G = &( 108 - 324L + 279L* - 200L3) (15) 

H=+(18-21L+22L2). (16) 

Tartaglia’s condition (see Durell and Robson [S]) for real roots of (14) and hence 
(11) is that G* + 4H3 < 0. Here we have that 

G2 + 4H3 = #(L - 2)2( 32L4 + 39L2 + 36) (17) 

is negative and so (11) does have three real roots. 
Differentiation of (11) shows that its turning points A= a, b can be found from 

3(2-L)/2*+2(6-11L)~-(6+11L)=O. (18) 

Denoting the product and sum of the roots by p and s, respectively, we have for 
L#2 that 

(19) 

(20) 

If L = 2 then (11) has two negative roots. If L > 2 then s < 0 so that cx < 0 and/or 
B < 0. Since c1 and /? are the turning points of the cubic (11) and all the roots are 
real, there must be a negative root. Similarly if 0 < L < 2 then p < 0 so that c( < 0 or 
fi < 0 and again there is a negative root. Therefore, for any possible L, this shows 
that the compact scheme (6) will contain oscillations. 
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TABLE I 

Solution of Compact Scheme (6) Using (21): h = 0.1, c = 0.5 

Node Exact 

L=l L=S 

Numerical Exact Numerical 

0 
1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

1 
0.988 
0.982 
0.865 

0 

1 1 1 
1 1 1.673 
1 1 0.911 
1 1 1.832 
1 1 0.710 

0.999 1 2.011 
1.002 1 0.411 
0.933 1 2.441 
0.990 1 - 0.029 
0.838 1 2.936 

0 0 0 

Using a different argument to the above, the ever presence of oscillatory solutions 
for a similar problem was noted by Ciment, Leventhal, and Weinberg [3]. To 
remove the oscillatory behavior they used an operator compact implicit method of 
polynomial type. It was pointed out in [3] that the oscillations may be insignificant 
at lower values of K in which case the nonupwind compact scheme can be applied 
without difficulty. Our goal however, is the removal or damping of the oscillations 
inherent in the method at larger values of K and fixed h and we restrict interest to 
this situation. 

In Table I some numerical results are presented to show the extent of the 
oscillations contained in (6) as K increases. Additional boundary relations were 
obtained from 

which was also used by Hirsh. The formula is fifth order when c=OS and fourth 
order otherwise. A fixed grid size of h = 0.1 was chosen and the solution was 
calculated at K= 20 and 100, corresponding to L = 1 and 5, respectively. The 
higher order (c=O.5) boundary relations were used. Comparison with the exact 
values shows the large oscillations at K = 100 which swamp the solution completely. 
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3. UPWIND COMPACT FINITE DIFFERENCES 

In this section an attempt is made to damp out the oscillations inherent in the 
standard compact differences. The second derivatives are found again from Eq. (5) 
but for the first derivatives a modification of the form 

F,= (1 -Y)&+YD- u, 

’ l+(h2/6)D+D- ’ (22) 

is made to introduce the free parameter y. The new system of equations to be solved 
consists of (6b) and (6~) together with 

~(Fi+,+4Fi+Fi-,)z~((1ey) Ui+l+2yUi-(1+y) 17-*). (23) 

Taylor series expansions give the truncation error as 

FiZ U,!-$ U’S’-yh u”+ ,.. 
2 ’ (24) 

and so y = U(h3) is necessary to maintain the fourth-order accuracy. Notice that the 
choice y = 1 which gives a backward difference on the numerator of (22) leads to a 
low-order approximation in (24). 

Eliminating Si and Fi between (6b), (6c), and (23) gives the live point formula 
in Ui 

[2-(I-y)L] Ui+2+2[2-(5-4y)L] U;+,-2[6+9yLl ui 

+2[2+(5+4y)L] UiPi+[2+(1+y)L] Ui-z=O. (25) 

The characteristic equation gives A= 1 and the other three roots come from the 
cubic 

[2-(1 -y)L] A3+ [6-(11-9y)L] A2 

-[6+(11+9y)L]A-[2+(1+y)L]=O. (26) 

Choosing y so that a root of (26) is ezL, which is a root of the exact characteristic 
equation gives 

Y = Yopt 1 
and a series expansion shows that for this optimal value 

(27) 

-L3 977 
Y opt =- 45 

--L5- . . . . 
37800 

Thus y = O(h3) for fixed K. 

C-28) 
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Numerical results for the upwind compact method are shown in Table II and the 
additional boundary data is again provided by (21). A comparison with Table I 
shows a clear reduction in the oscillations. With c = 0.5, however, fairly substantial 
errors still appear when L = 5 and this suggests that an upwinding of the boundary 
relations should also be carried out. To accomplish this, observe that when Si is 
eliminated from (6b), (6c), and (23), 

J’i=& CG’-(1 -Y)L) ui+i -(4+2yL) Ui+(2+(1+y)L) Uip,]. (29) 

If Ui is the exact solution (2) and y = yoPt then 

Fi = 
6@L - e--L)2 ,+i 

hL( 1 - eK)(eZL + 10 + e-2L) ’ (30) 

Substitution of (30) and (6~) into (21) shows that 

(6 - 5L) ezL -(6+8L)+Lec2L 
c=c 

“p’=6((1-L)eL-(1+L)e-L)(eL-ePL)’ (31) 

With the values y = yopt and c = copt the upwind compact scheme is exact. For large 
4 c opt -+ 2 and results for this value, also presented in Table II, show an 
improvement over those for c = $ at the larger values of L. 

Figure 1 shows the graphs of yopt and c,,~~ as L increases. Taking limits as L + 0 
in Yopt and copt g ives the respective values of 0 and $. For L slightly positive the 
graph of Yopt is just negative. This reiterates the conclusion of Ciment, Leventhal, 
and Weinberg [3] that there exists a threshold below which upwinding is 

FIG. 1. Graphs of yOPt and cOPt versus L. 
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TABLE III 

Convergence Rates for Maximum Error in F 

N Error 

y=o 

Rate Error 

Y = Yopt 

Rate 

10 6.53E-2 6.46E-2 
20 5.47E-3 3.58 5.23E-3 3.63 
40 4.00E-4 3.17 3.74E-4 3.81 
80 2.71 E-5 3.88 2.51E-5 3.90 

160 1.76E-6 3.94 1.62E-6 3.95 
320 l.l3E-7 3.96 1.03 E-7 3.91 

unnecessary. This is further seen in Table II, where for L = 1 the oscillations are 
mild. 

In Table III the rate of convergence of the maximum error in Fi is computed as 
the grid size is successively halved. Assuming E,, = khP and E,,,* = k(h/2)” are two 
successive maximum errors then the rate p is estimated from 

P = & MEhlEhlZ). (32) 

The nonupwind scheme y = 0 is compared to that using yoPt with the values K= 10 
and c= 0.5. The computed rates agree closely with the theoretical order of the 
method. It should also be emphasized that the fourth-order convergence is achieved 
for realistic oalues of h in the sense that an excessive number of mesh points is not 
required to maintain the accuracy. The results could probably be improved by the 
use of a variable grid in the boundary layer region such as that in [l]. 

4. TIME DEPENDENT PROBLEMS 

The extension of the upwind compact method to time dependent problems is 
straightforward. The first test problem to be solved was 

VU,, -Ku,=u,, (X,f)ECO>1lXCO,~) (334 
u(0, t) = 1, u(l, t)=O, t > 0, 

u(x, 0) = 1, O<x<l, u(l,O)=O, 

where v and K are positive constants. Equation (33a) becomes 

vS,? - KF,?’ = 
U;+‘-V; 

At ’ 
n = 0, l,..., 

Pb) 

(34) 
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TABLE IV 

Compact Solution of vu,, - Ku,=u,: h=O.l, At=O.Ol, t=0.5 

Node 

L=l L=5 

Y = Yopt y=o Y = Yopt y=o 

0 1 1 1 1 
1 1 1 1 1.667 
2 1 1 1 0.917 
3 1 1 1 1.837 
4 1 1 1.001 0.713 
5 1 0.999 0.999 2.066 
6 1 1.002 1.001 0.407 
7 0.998 0.993 1 2.462 
8 0.982 0.990 1 -0.048 - 

9 0.865 0.838 1 2.940 
10 0 0 0 0 

where At is the time step and t = n At. The superscript * in (34) denotes the time 
level at which Fi and Si are to be evaluated. Equations (23) and (6b) complete the 
compact system and Ui, Fi, Si are also evaluated at *. If * = n then the explicit 
system is very easy to solve. However as Hirsh pointed out, this scheme has severe 
stability restrictions. We made use of the Crank-Nicolson method (* = n + $) in 
which case 

and the system is unconditionally stable with second-order accuracy in time. 
If the unknowns are ordered as q + l, FF, and ST then the banded system of 

equations is block tridiagonal and each block is 3 x 3. A simpler system with 2 x 2 
blocks can be produced by using (34) to eliminate one of the unknowns. This 
smaller system was used for the computations. 

In Table IV results are presented for (33). The grid size was h = 0.1 and the time 
step in the Crank-Nicolson time discretisation was At = 0.01. The solution is shown 
after 100 time steps, at t = 0.5. The additional boundary relations were found from 
(21). With y = 0 (no upwinding), c = + and with y = yopt, c = copt. In formulas (27) 
and (3 1) we used L = hK/2v. The viscosity was fixed at v = 1 and two values K= 20 
and K= 100 were chosen. At the lower value of L, the standard (y = 0) compact 
solution is well behaved and only very mild oscillations appear. At L = 5, however, 
the results contain large oscillations. The use of the upwind scheme damps out the 
oscillations. 

The convergence rates given in Table V were obtained from 

(35) 
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TABLE V 

Convergence Rates for vu,- Ku,=q: K=lO, v=l, t=0.4, y=yoPt 

N At Steps u(O.9) Rate 

80 6.25E-3 64 0.63214510669621 
160 1.5625E-3 256 0.63214488298773 3.94 
320 3.90625E-4 1024 0.63214486844268 3.93 
640 9.765625E-5 4096 0.63214486749075 

where Uh = U + khP and U is the exact value. The grid size was halved twice to 
obtain three successive approximations at a point and U and k were eliminated to 
give (35). Values of K = 10 and v = 1 were chosen and the solutions were compared 
at x =0.9. The mesh was reduced according to At = 40h* and since the Crank- 
Nicolson method is second order in time the expected rate is p = 4. Close agreement 
with this value was found numerically and similar results to those in Table V were 
also found when y = 0. 

The second problem to be solved consisted of the nonlinear Burgers’ equation 

along with the boundary conditions and initial condition 

u(0, t)=u(l, t)=O, t > 0, 

2.4(x, 0) = sin 71x, o<x<7c. 
(36b) 

This problem was studied by Cole [S] who predicted the appearance of a sharp 
boundary layer near x = 1 as the viscosity v decreases. 

The Crank-Nicolson discretisation of the upwind compact system leads to a non- 
linear set of equations given by (23) (6b), and 

vs? - UirFir = Uy+‘-U; 
I I At ’ 

n = 0, l,..., (37) 

where * = IZ + $ and in (23), (6b), the terms Ui, Fi, Si are also computed at n + 4. 
Equation (37) can be used to eliminate one of the unknowns UF, F,?, ST, and the 
result is a nonlinear system of equations. These were solved by Newton iteration in 
which the Jacobian turned out to be block tridiagonal with 2 x 2 blocks. 

Table VI shows the computed convergence rates from formula (35) at x = 0.9 and 
t = 0.5. To use yopt a value of L had to be selected and L = hf2v was found to work 
well. The viscosity was v = 0.1 and the grid was reduced according to At = 5h2. 
Again there is close agreement with the predicted rate. A smaller value v = 0.01 was 
also selected but produced results for which the convergence was not monotone so 
that formula (35) could not be used. 
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TABLE VI 

Convergence Rates for Burgers’ Equation: v = 0.1, f = 0.5, y = yoP, 

N Al Steps U(O.9) Rate 

10 KOE-2 10 0.311oooO87 
20 1.25E-2 40 0.30945 1004 3.97 
40 3.125E-3 160 0.309352226 4.00 
80 7.8125E-4 640 0.309346064 4.00 

160 1.953125E-4 2560 0.309345679 

0 1.0 

FIG. 2. Burgers’ equation, t = 0.5, v = 0.1. Upwind and non-upwind solutions. 

1. 

” 0 

FIG. 3. Burgers’ equation, f =0.5, v =O.Ol. Broken line denotes the upwind solution with N= 160. 
Non-upwind (oscillatory) and upwind solutions were calculated with N = 20. 
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/ 

1.i 
- 
0 

FIG. 4. Burgers’ equation, t = 0.5, v =O.OOl. N= 160 upwind (broken line), N= 20 non-upwind 
(large oscillations) and upwind. 

FIG. 5. Burgers’ equation, t =0.5, v =O.OOOl. N= 160 upwind (broken line), N= 20 non-upwind 
(large oscillations) and upwind. 
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A series of numerical calculations were performed to compare the upwind and 
nonupwind compact schemes when v is decreased from 0.1 to 0.0001. The results 
are presented at t = 0.5 in Figs. 2-5. No simple analytical solution exists for this 
problem so an accurate solution was also calculated for comparison using N = 160 
in the upwind scheme. The additional boundary information was found satisfac- 
torily when a value of c = 0.5 was used throughout. For unknown reasons copt led 
to poor convergence in Newton’s method and was not used here. This was in con- 
trast to the linear problems solved previously, where c,,,~ gave more favorable 
results than c = 4. In all calculations the mesh ratio was At/h* = 5. 

In Fig. 2 the viscosity is v = 0.1 which turns out to be an easy case and all the 
methods perform well. A single curve is shown and both upwind and nonupwind 
methods gave this for N = 20, 160. 

In Fig. 3 we have v = 0.01. The upwind and nonupwind solutions were found with 
N = 20. An oscillation has appeared in the nonupwind results and this has been 
effectively smoothed out by the upwinding. The broken line denotes an accurate 
solution which was found from the upwind solution with N= 160. 

Reducing the viscosity to v = 0.001 gives the results graphed in Fig. 4 and those 
for v = 0.0001 are shown in Fig. 5. Again N = 20 for the upwind and nonupwind 
schemes and N= 160 provides the accurate solution for comparison denoted by the 
broken line. In each of these figures the nonupwind solution produces a huge 

TABLE VII 

Solution of Burgers’ Equation at f = 0.5, Y = O.OOQl, At = 5h2 

Upwind (Ye,,) Non-upwind 

X N=20 N= 160 N=20 N=160 

0.9 0.891 0.959 0.721 0.820 
0.962 1.187 
0.965 0.818 
0.968 1.212 
0.971 0.817 
0.973 1.237 
0.976 0.814 
0.978 1.264 

0.95 0.682 0.980 1.306 0.811 
0.981 1.291 
0.983 0.807 
0.984 1.320 
0.985 0.803 
0.985 1.349 
0.988 0.798 
0.761 1.379 

1.0 0 0 0 0 
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oscillation which is damped by the upwinding. At the lower values of v the 
upwinding has overdamped the solution in the boundary layer region. 

The actual numerical values for v = 0.0001 are given in Table VII at the boundary 
layer. These values were used in Fig. 5. The nonupwind solution contains large 
oscillations even at N= 160. Despite the loss of accuracy in the boundary layer the 
upwinding has achieved its goal of damping the oscillations and no doubt with a 
variable grid there would be a better resolution of the boundary layer. 

5. CONCLUSION 

The standard compact finite difference method as used by Hirsh is unsuitable in 
certain convection dominated problems. An upwinding of this method has been 
suggested and it has been demonstrated that the large nonphysical oscillations 
which occur with the standard compact scheme can be damped out. The overdamp- 
ing of the solution in the boundary layer suggests that in practice a variable mesh 
approach such as done by Aubert and Deville may be useful. One consideration 
here is that a variable mesh in the boundary layer would mean small h values and, 
since y = O(h3), the possible elimination of the upwinding. 

Work is underway to apply the upwind compact scheme to 2-dimensional flow 
problems. Of significance in these cases will be the choice of upwinding parameters. 
The work of Hirsh showed for the driven cavity problem that greatly increased 
accuracy is obtained by the standard compact method with far fewer mesh points 
than a second-order method. It remains to be seen whether the upwinding is 
capable of the improvement in 2-dimensional problems which it gave for the 
l-dimensional case. 
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